LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

OCAT INVESTIGA

M.Sc. DEGREE EXAMINATION - CHEMISTRY

FOURTH SEMESTER - APRIL 2024

PCH 4502 - ELECTROCHEMISTRY

Date: 03-04-2024	Dept. No.	Max.: 100 Marks
Time: 09:00 AM - 12:0	00 NOON L	

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. State Bjerrum hypothesis for ion pair formation.
- 2. Find the osmotic pressure of 0.1 M aqueous solution of sodium chloride at 25° C. (R = 0.0821 atm L mol⁻¹ K⁻¹)
- 3. Diagrammatically represent the outer and inner Helmholtz planes.
- 4. Write the factors affecting zeta potential.
- 5. Mention the disadvantages of dropping mercury electrode used in polarography.
- 6. Prove that Faraday's law is a kinetic expression.
- 7. What is the condition for an electrode to behave as an anodic rectifier?
- 8. Define stoichiometric number.
- 9. How are the symmetric factor and transfer coefficient related in a multistep anodic oxidation process?
- 10. Mention the significance of pitting potential.

Part-B

Answer any FOUR questions.

 $(4\times10=40)$

- 11. Apply Born model to find the change in free energy of ion solvent interaction.
- 12. (a) Obtain the solution for the linearised Poisson-Boltzmann equation for interionic interactions.
 - (b) For the cell reaction, $Zn + 2AgCl_{(s)} \rightarrow 2Ag + Zn^{2+} + 2Cl$, E° cell at 298 K is 1.4 V. Evaluate ΔG° , ΔH° , and ΔS° for the cell reaction if the temperature coefficient of cell EMF is equal to -2.54 x 10⁻⁴ VK⁻¹. (1 Faraday = 96500 C)
- 13. Distinguish the following electrokinetic phenomena.
 - (i) Electro osmosis and Electrophoresis
 - (ii) Streaming and Sedimentation potentials

(5+5)

- 14. (a) Explain the construction and working principle of solid oxide fuel cell.
 - (b) Mention the various types of amperometric titration curves.

(6+4)

- 15. (a) Discuss the Ohmic and non-Ohmic behavior of electrodes.
 - (b) Compare the kinetics of the reaction $M^{n+} + ne^{-} \rightarrow M$ at the over potentials

(i) - 0.2 V (ii) + 0.2 V

(6+4)

- 16. Obtain the Butler-Volmer equation for an elementary electron transfer reaction and explain the modification of the equation when the over potential is zero.
- 17. (a) Discuss the low field and high field approximations of Butler-Volmer equation.
 - (b) The exchange current density and the anodic symmetric factor of an electron transfer reaction are 1.26×10^{-5} Acm⁻² and 0.53 respectively. Calculate the net current density at an over potential of -200 mV.
- 18. Explain the following.
 - (i) polarizable and non-polarisable electrodes.
 - (ii) phase and activation over potentials.

(5+5)

Part-C

Answer any TWO questions.

 $(2 \times 20 = 40)$

- 19. (a) Derive Debye-Huckel limiting law. Explain any one application of the law.
 - (b) Explain the theoretical background of Debye-Huckel-Onsager equation.
 - (c) Calculate the mean activity coefficient of 0.0015 M aqueous solution of calcium chloride at 298 K. (10+6+4)
- 20. (a) Discuss in detail Gouy-Chapman diffuse charge model of electrified interface. What are its limitations?
 - (b) Explain Wiens and Debye-Falkenhagen effects which are the evidences for the theory of electrolytic conductance.
 - (c) Find the thickness of ionic atmosphere for 0.01 M aqueous solution of KNO₃ at
 - 25 °C. (Dielectric constant of water is 78.6)

(10+6+4)

- 21. (a) For a multistep electron transfer reaction,
 - (i) derive an expression for its cathodic current density
 - (ii) write the expression for its net current density and mention the terms involved.
 - (b) Calculate the potential at which $Cr_2O_7^{2-}$ is reduced to Cr^{3+} in a solution of pH = 5. Given: SRP of $Cr_2O_7^{2-}$ / $Cr^{3+} = +1.33$ V. (13+7)
- 22. (a) The reduction of triiodide to iodide takes place through the following mechanism.

$$I_3$$
 \rightleftharpoons $I_2 + I$
 $I_2 \rightleftharpoons$ $2I$
 $2(I + e \rightleftharpoons I)$

Evaluate the transfer coefficients and prove that the third step is the rate determining step.

(b) Explain the formation of various regions in a Pourbaix diagram with an example and mention its importance. (12+8)
